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The objective is to learn how to write down Newton’s second law so that it works in a 
non-inertial reference frame.  We considered first the case of a reference frame undergoing 
constant linear acceleration 𝐴.  By comparing a description of the motion of an object as seen 
from an inertial reference frame to that same object seen from a non-inertial reference frame, 
we concluded that Newton’s second law in the non-inertial reference frame must be written 
as 𝑚𝑟̈ = 𝐹⃗𝑛𝑒𝑡 − 𝑚𝐴.  The “inertial force”  𝐹⃗𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = −𝑚𝐴 must be added to the net force to 
make the equation of motion work in the non-inertial frame.  We experience this inertial 
force as a backwards force when sitting in an aircraft that is accelerating down the runway 
for takeoff. 

Making Newton’s second law work in a rotating reference frame is more of a challenge.  
Consider a rigid body undergoing pure rotational motion on an axis through a point inside the 
object.  A rigid body is one in which the distances between the particles do not change during 
the motion.  Rotation is specified by an axis of rotation 𝑢� , and a rate 𝜔.  We shall assume that 
both the axis and the rate of rotation are fixed as a function of time.  We found that the linear 
velocity of a particle at location 𝑟 inside the object is given by 𝑣⃗ = 𝜔��⃗ × 𝑟.  In other words 
𝑑𝑟
𝑑𝑡

= 𝜔��⃗ × 𝑟, or in general for any vector 𝑒 in the rigid body 𝑑𝑒
𝑑𝑡

= 𝜔��⃗ × 𝑒. 

We then calculated the relationship between the time-derivative of a vector 𝑄�⃗  as seen in 
an inertial reference frame S0, to the derivative of the same vector seen in the rotating 
reference frame S.  We assume that the two reference frames have the same origin, but frame 
S is rotating about an arbitrary axis Ω� through the origin at a rate Ω.  The time-derivatives are 

related as �𝑑𝑄
�⃗

𝑑𝑡
�
𝑆0

= �𝑑𝑄
�⃗

𝑑𝑡
�
𝑆

+ Ω��⃗ × 𝑄�⃗ .  This equation says that the time derivative of the vector 

as witnessed in the inertial reference frame consists of any change in its magnitude or 
direction as seen in the non-inertial reference frame, plus the change brought about by the 
fact that the vector 𝑄�⃗  is embedded in a rotating rigid body. 

Newton’s second law can now be written for an observer in a rotating reference frame as 
𝑚𝑟̈ = 𝐹⃗𝑛𝑒𝑡 + 2𝑚𝑟̇ × Ω��⃗ + 𝑚�Ω��⃗ × 𝑟� × Ω��⃗ .  The two “inertial forces” on the right are called 
the Coriolis force and the centrifugal force, respectively. 

We considered the centrifugal force for a stationary observer on the surface of the earth.  
This force has a direction that is directly away from the axis of rotation of the earth and can 
be written as F�⃗ 𝐶𝐹 = 𝑚Ω2𝑟 sin𝜃 𝜌�, where 𝑟 is the distance from the center of the earth, 𝜃 is 
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the polar angle of the location on the surface (also known as the co-latitude) and 𝜌� is the 
radial unit vector from cylindrical coordinates.  This force has a maximum magnitude near 
the equator, but goes to zero at the poles.  The centrifugal force modifies the free-fall 
direction.  It creates a new effective gravitational acceleration vector of 𝑔⃗ = 𝑔⃗0 +
Ω2𝑅 sin 𝜃 𝜌�, where 𝑔⃗0 is the bare Newtonian gravity acceleration vector that points directly 
to the center of the earth, and 𝑅 is the radius of the earth.  The radial component of this 
vector is 𝑔𝑟𝑎𝑑 = 𝑔0 − Ω2𝑅 sin2 𝜃, showing that things weigh a bit less at the equator than at 
the north/south pole.  The effect is small, only about 0.3%.  The tangential component of 𝑔⃗ is 
𝑔𝑡𝑎𝑛𝑔 = Ω2𝑅 sin𝜃 cos 𝜃, with a maximum value at 45o latitude.  This component produces a 
0.1o tilt of 𝑔⃗ with respect to the direction of 𝑔⃗0. 


